Rational Expressions and Functions: Multiplying and Dividing

A rational expression is a ______ divided by a ______.

ex:	50 <i>x</i>	3 <i>x</i> +1	$x^2 + 3xy - 10y^2$
	10 <i>-x</i>	$x^2 - 3x + 2$	$3x^2 - 7xy + 2y^2$

Ex 1.

Find the domain of $f(x) = \frac{x-5}{2x^2+5x-3}$

Ex 2. Find the domain of $f(x) = \frac{3}{x^2+1}$

To simplify a rational expression:

1. _____ top and bottom completely.

2. _____ any common factors.

Ex 3.

Simplify: $\frac{x^2 + 7x + 10}{x + 2}$

Note:

When we simplify rational expressions, we're changing the _____ of the related rational functions. ex: The domain of $\frac{x^2+7x+10}{x+2}$ is all real #'s except -2, but the domain of x + 5 is all real #'s. So, to simplify, but also keep the original domain, we can write: $\frac{x^2+7x+10}{x+2} = x + 5$, for $x \neq -2$ Ex 4.

Simplify: $\frac{3x^2 + 9xy - 12y^2}{9x^3 - 9xy^2}$

To multiply rational expressions:

- 1. _____ tops and bottoms completely.
- 2. _____ common factors.
- 3. ______ remaining factors on top and on bottom (you can leave top/bottom factored).

Ex 5.

Multiply: $\frac{x+4}{x-7} \cdot \frac{x^2-4x-21}{x^2-16}$

Ex 6.

Multiply: $\frac{4x+8}{6x-3x^2} \cdot \frac{3x^2-4x-4}{9x^2-4}$

Dividing is the same as multiplying by the ______.

Ex 7.

Divide: $\frac{x^2 - x - 12}{5x} \div \frac{x^2 - 10x + 24}{x^2 - 6x}$

Ex 8.

Divide:
$$(9x^2 - 49) \div \frac{3x - 7}{9}$$

Practice

- 1. Find the domain of $\frac{x^2-2x-15}{3x^2+8x-3}$ and then simplify the rational expression.
- 2. Simplify: $\frac{x^2 + 2xy 3y^2}{2x^2 + 5xy 3y^2}$
- 3. Multiply and simplify: $\frac{x^2+4x+4}{x^2+8x+16} \cdot \frac{(x+4)^3}{(x+2)^3}$
- 4. Multiply and simplify: $\frac{6y+2}{y^2-1} \cdot \frac{1-y}{3y^2+y}$
- 5. Divide and simplify: $\frac{x^2-x}{15} \div \frac{x-1}{5}$
- 6. Divide and simplify: $(x^2 + 4x 5) \div \frac{x^2 25}{x + 7}$

Q: A man rode his horse into town on Tuesday. Two days later he rode home on Tuesday. How is this possible?