8.1 – Notes

Evaluating Roots

Square Roots

What are all of the square root	s of 25?	
The	of 25 is written $\sqrt{25}$, and is	by definition.
Ex 1.		Square roots
$\sqrt{81} =$	$\overline{9} =$	$\sqrt{1} = 1$
V01 —	$\sqrt{49}$	$\sqrt{4} = 2$
		$\sqrt{9} = 3$
	/0 _	$\sqrt{16} = 4$
$-\sqrt{64} =$	$\sqrt{0} =$	$\sqrt{25} = 5$
		$\sqrt{36} = 6$
		$\sqrt{49} = 7$
$\sqrt{0.81} =$		$\sqrt{64} = 8$
10101		$\sqrt{81} = 9$
		$\sqrt{100} = 10$
Cube Roots		$\sqrt{121} = 11$
$\sqrt[3]{8}$ ("the cube root of 8") mean	$\sqrt{144} = 12$	
So, $\sqrt[3]{8} = $ since () ³ = 8		$\sqrt{169} = 13$
Ex 2.		Cube roots
$\sqrt[3]{-8} =$	$\sqrt[3]{125} =$	$\sqrt[3]{1} = 1$
		$\sqrt[3]{8} = 2$
		$\sqrt[3]{27} = 3$
		$\sqrt[3]{64} = 4$
Even and Odd <i>n</i> th Roots		$\sqrt[3]{125} = 5$
$\sqrt[5]{32} = $ since () ⁵ = 32		$\sqrt[3]{216} = 6$
$\sqrt[n]{a}$ is read "the <i>n</i>th root of <i>a</i> "		$\sqrt[3]{1000} = 10$
Ex 3.		Fourth roots
$\sqrt[4]{16} =$	$-\sqrt[4]{16} =$	Fourth roots $4/1$ 1
		$\sqrt{1} = 1$
		$\sqrt{16} = 2$
4 (1 (5 243	$\sqrt{81} = 3$
$\sqrt{-16}$	$\sqrt{-243} =$	$\sqrt{250} = 4$
		$\sqrt{625} = 5$ $\frac{4}{10000} = 10$
		V10000 = 10
$\sqrt[7]{-1} =$		Fifth roots
v ± —		$\sqrt[5]{1} = 1$
		$\sqrt[5]{32} = 2$
		$\sqrt[5]{243} = 3$

 $-\sqrt{29}$

Ex 4.

Find the square of each radical expression.

 $\sqrt{15}$

Numbers with square roots that are rational are called ______ex: 25 is a perfect square since $\sqrt{25} = 5$, which is rational. ex: 169 is a perfect square since $\sqrt{169} = 13$, which is rational. ex: 5 is not a perfect square.

\sqrt{a} is	if <i>a</i> is a perfect square.	ex: $\sqrt{144}$, $\sqrt{\frac{4}{9}}$
\sqrt{a} is	if a is not a perfect square and $a > 0$.	ex: $\sqrt{3}, \sqrt{6}$
\sqrt{a} is	if $a < 0$.	ex: $\sqrt{-9}$, $\sqrt{-11}$

Ex 5.

Determine whether each number is rational, irrational, or not a real number. $\sqrt{169}$

 $\sqrt{17}$

 $\sqrt{-4}$

Note: We can approximate square roots like $\sqrt{5}$ by knowing nearby perfect squares: $\sqrt{4} < \sqrt{5} < \sqrt{9}$ $2 < \sqrt{5} < 3$ \leftarrow So, $\sqrt{5}$ is between 2 and 3. In fact, it is approximately 2.236.

Recall the Pythagorean Theorem: In right triangles, $(leg)^2 + (leg)^2 = (hyp)^2$. **Ex 6.**

A ladder 10 ft long leans against a wall. The foot of the ladder is 6 ft from the base of the wall. How high up the wall does the top of the ladder rest?

The Distance Formula

Ex 7. Find the distance between (3, -5) and (-2,8).

Suppose you're looking for the distance from point P at (x_1, y_1) to point R at (x_2, y_2) . Using the Pythagorean Theorem, we get: $d^2 = (x_2 - x_1)^2 + (y_2 - y_1)^2$

Taking the square root of each side, we get the **distance formula**:

$$d = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

Practice				
1. Evaluate.				
$-\sqrt{\frac{4}{25}}$	$\sqrt{-64}$	$\sqrt{0.64}$		
$-\sqrt{0.04}$	∛-64	$\sqrt{144 + 25}$		
$\sqrt[3]{\frac{-8}{125}}$	∜81	∜√-81		
°√−1	$-\sqrt[4]{10,000}$			

2. A rectangle has dimensions 5 ft by 12 ft. Find the length of its diagonal.

3. Find the distance between (-6,3) and (-2,-4).

Q: A bus driver was heading down a street in Walnut. He went right past a stop sign without stopping, went the wrong way on a one-way street, and then went on the left side of the road past a cop car. The cop did nothing, because he didn't break any traffic laws. Why not?