Graphing Linear Equations

Here's an equation with two variables:

x + y = 3

Solutions to this equation can be written as ordered pairs:

Ex 1.

Determine whether (-4, 3) is a solution to the equation 2x + 3y = 12.

Ex 2.

Determine whether (3, 2.5) is a solution to the equation $y = \frac{1}{2}x + 1$.

Ex 3.

Find three solutions for the equation 3x + y = 3.

Ex 4.

Find three solutions for the equation $y = \frac{1}{3}x + 4$.

Graphing Linear Equations

We can plot solutions to equations in two variables in a rectangular coordinate system. This is called graphing an equation.

A point where the graph intersect the *x*-axis is called an ______. A point where the graph intersect the *y*-axis is called a ______.

To find an *x*-intercept:

- 1. Replace y with 0 in equation.
- 2. Solve for *x*.

To find an *y*-intercept:

- 1. Replace x with 0 in equation.
- 2. Solve for *y*.

Ex 9.

Find the coordinates of the *x*- and *y*-intercepts. x - 4y = 8

Ex 10. Find the coordinates of the *x*- and *y*-intercepts. x = -3