Multiplying Decimal Numbers; Exponents with Decimal Bases

Ex 1.

2.04 · 0.09

(-1.5)(2.91)

 $(-0.05)^3$

 $(1.7x^3)(6.2x^2)$

Ex 2.

If you buy 4.5 pounds of oatmeal at \$0.69 per pound, what is the total cost?

_____ means the price of each unit.

Note that $2.3 \cdot 10 = 23$, and $2.3 \cdot 100 = 230$, and $2.3 \cdot 1000 = 2300$.

Multiplying by a positive power of 10 (ex: 10^2 , 10^3 , 10^4 , etc.) moves the decimal place to the right.

_____ is a convenient way to write really big or really small numbers as a decimal number between 1 and 10 multiplied by a power of 10.

So, there are two parts:

- 1. A decimal number whose absolute value is between 1 and 10 (including 1 but not 10).
- 2. 10 raised to an integer exponent.

ex: 3.27×10^3 is in scientific notation

$$3.27 \times 10^3 = 3.27 \times 10 \times 10 \times 10 = 3270$$

ex: Is 24.6×10^4 in scientific notation?

ex: Is -1.1×10^5 in scientific notation?

Ex 3.

Write the number in standard form, then write its word name.

 7.81×10^{9}

 -1.5×10^{13}

Ex 4.

Write each number in scientific notation.

91,000