Multiplying Decimal Numbers; Exponents with Decimal Bases ## Ex 1. 2.04 · 0.09 (-1.5)(2.91) $(-0.05)^3$ $(1.7x^3)(6.2x^2)$ ## Ex 2. If you buy 4.5 pounds of oatmeal at \$0.69 per pound, what is the total cost? _____ means the price of each unit. Note that $2.3 \cdot 10 = 23$, and $2.3 \cdot 100 = 230$, and $2.3 \cdot 1000 = 2300$. Multiplying by a positive power of 10 (ex: 10^2 , 10^3 , 10^4 , etc.) moves the decimal place to the right. _____ is a convenient way to write really big or really small numbers as a decimal number between 1 and 10 multiplied by a power of 10. So, there are two parts: - 1. A decimal number whose absolute value is between 1 and 10 (including 1 but not 10). - 2. 10 raised to an integer exponent. ex: 3.27×10^3 is in scientific notation $$3.27 \times 10^3 = 3.27 \times 10 \times 10 \times 10 = 3270$$ ex: Is 24.6×10^4 in scientific notation? ex: Is -1.1×10^5 in scientific notation? ### Ex 3. Write the number in standard form, then write its word name. 7.81×10^{9} -1.5×10^{13} ### Ex 4. Write each number in scientific notation. 91,000