Test #2 (Part 2	Scientific	Calculator	Okav)
ICSL #Z	i ait Z	, Jeientine	Calculator	Oray,

Name: ______

Math 181, Prof. Beydler

Wednesday, October 24, 2018

Directions: Show all work. No books or notes. A **scientific calculator** is allowed. Your desk and lap must be clear (no phones, no smart watches, etc.). If you have a phone in your lap or on your chair, it is considered cheating, and you will receive a zero on this test. Write your answers in the indicated places, or box your answers. Good luck!

1. Consider the integral $\int_1^3 e^{-x} dx$.

Trapezoidal Rule: $\int_{a}^{b} f(x) dx \approx \frac{\Delta x}{2} [f(x_0) + 2f(x_1) + \dots + 2f(x_{n-1}) + f(x_n)]$

 $|E_T| \le \frac{M(b-a)^3}{12n^2}$ (M is any upper bound of |f''| on [a,b], and n is # of subintervals)

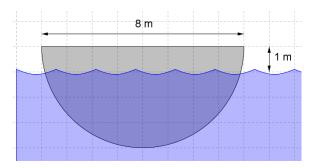
a. (3 points) Use the Trapezoidal Rule with n=4 steps to approximate the integral to 6 decimal places.

Answer:

b. (3 points) How large does n need to be to guarantee that the approximation from part (a) is accurate to within 0.00001?

n = _____

Page **2** of **4**


2. (5 points) Find the length of $x = \ln(\cos y)$ from $y = \frac{\pi}{6}$ to $y = \frac{\pi}{4}$.

Answer:

3. (5 points) Find the area of the surface generated by revolving the curve $y=2\sqrt{x}$ from x=1 to x=4 about the x-axis.

Answer:

4. (4 points) A vertical plate in the shape of a semicircle is partially submerged in water as shown. **Set up (but do not evaluate) an integral** to find the exact hydrostatic force against one side of the plate. (Note: you can use 1000 kg/m³ for the mass-density of water, and 9.8 m/s² for the acceleration due to gravity.)

Answer:

5. (5 points) Find the area of the region between enclosed by $x = y^2 - y$ and x = y. Then **set up (but do not evaluate) integrals** to find the x and y coordinates (\bar{x}, \bar{y}) of the centroid.

Area = _____

 $\bar{x} = \underline{\hspace{1cm}}$

 $\bar{y} = \underline{\hspace{1cm}}$

	Answer:	

Here are a couple of formulas I promised to give you: $\int \sec x \, dx = \ln|\sec x + \tan x| + C$ $\int \csc x \, dx = -\ln|\csc x + \cot x| + C$

Note: Be sure to double-check your work!