1. Find the area of the region enclosed by the line y = 4x and the curve $y = x^3 + 3x^2$.

Intersection points:		
$4x = x^{3} + 3x^{2}$	$\int_{0} \left[4_{x} - (x) \right]$	$(+3x^2) \int dx$
$0 = \chi^{3} + 3\chi^{2} - 4\chi$	$= \left[2x^2 - \frac{x^4}{4} - \right]$	\times^3
$0 = x (x^{2} + 3x - 4)$	$= (2 - \frac{1}{4} - 1) -$	- 0
0 = x (x + 4)(x - 1)	= 3	
x=0 X=-4 X=1	4	$y = x^3 + 3x^2$
$\int_{-4}^{0} \left[(x^{3} + 3x^{2}) - 4x \right] dx$	Total area = $32 + \frac{3}{4}$	-4 0
$= \left[\frac{x^{4}}{4} + x^{3} - 2x^{2}\right]_{-4}^{0}$	$=32\frac{3}{4}(32.75)$	y = 4x
$= 0 - \left(\frac{256}{4} - 64 - 32\right) =$	32	X I

2. Find the area of the region enclosed by the curves $x - y^2 = 0$ and $x + 2y^2 = 3$. (Hint: Integrate in y direction.) $x = y^2$ $x = -2y^2 + 3$

