The Integral Test and Estimates of Sums

Let's look at the series $\sum_{n=1}^{\infty} \frac{1}{n}$ and compare it with $\int_{1}^{\infty} \frac{1}{x} dx$:

Note that $\int_{1}^{\infty} \frac{1}{x} dx < \sum_{n=1}^{\infty} \frac{1}{n}$.

So, by comparison, since $\int_1^\infty \frac{1}{x} dx$ ______, then the larger $\sum_{n=1}^\infty \frac{1}{n}$ must also ______.

Now let's look at the series $\sum_{n=1}^{\infty} \frac{1}{n^2}$ and compare it with $\int_{1}^{\infty} \frac{1}{x^2} dx$:

Note that $\sum_{n=1}^{\infty} \frac{1}{n^2} < 1 + \int_1^{\infty} \frac{1}{x^2} dx$.

So, by comparison, since $\int_1^\infty \frac{1}{x^2} dx$ ______, then the smaller $\sum_{n=1}^\infty \frac{1}{n^2}$ must also ______.

The Integral Test (connects series with integrals)

Suppose that $a_n = f(n)$, where f(x) is **continuous**, **positive**, and **decreasing** for all $x \ge N$ (N is some positive integer).

Then $\sum_{n=N}^{\infty} a_n$ and $\int_N^{\infty} f(x) \, dx$ both converge or both diverge.

Ex 1.

Does $\sum_{n=2}^{\infty} \frac{\ln n}{n}$ converge or diverge?

Ex 2.

Does $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converge or diverge?

Recall: $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ converges if p > 1, and diverges if $p \le 1$.

Similarly, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ (called a *p***-series**) converges if p > 1, and diverges if $p \le 1$. (Proof on last page.)

ex:
$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$
 converges. ex: $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ diverges.

Estimates of Sums

How accurate is a given partial sum? In other words, how close is the sum of the first n terms (s_n) to the sum of the infinite number of terms $(\sum a_n)$?

$$\sum a_n = a_1 + a_2 + \dots + a_n + a_{n+1} + a_{n+2} + \dots$$

Remainder Estimate for the Integral Test

Suppose that $a_n=f(n)$, where f(x) is continuous, positive, and decreasing for all $x\geq n$. If $\sum a_n$ converges, then

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_n^{\infty} f(x) \, dx$$

Ex 3.

Estimate the error in using s_{10} as an approximation to the sum of $\sum_{n=1}^{\infty} \frac{1}{n^3}$. Also, how many terms are needed to make sure that the sum is accurate to within 0.0005?

If we take

$$\int_{n+1}^{\infty} f(x) \, dx \le R_n \le \int_{n}^{\infty} f(x) \, dx$$

and add s_n to all three parts, we get

$$s_n + \int_{n+1}^{\infty} f(x) \, dx \le s_n + R_n \le s_n + \int_n^{\infty} f(x) \, dx.$$

Since $s_n + R_n = \sum a_n$, we get an upper and lower bound for our series:

$$s_n + \int_{n+1}^{\infty} f(x) \, dx \le \sum a_n \le s_n + \int_n^{\infty} f(x) \, dx$$

(Note: This is referred to as 3 in the book.)

Ex 4.

Use 3 with n=10 to give an improved estimate of the sum of $\sum_{n=1}^{\infty} \frac{1}{n^3}$ (better than s_{10}).

Proof of why $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p>1, and diverges if $p\leq 1$.

Case 1 (p=0): $\lim_{n\to\infty}\frac{1}{n^p}=\lim_{n\to\infty}\frac{1}{n^0}=\lim_{n\to\infty}1=1$, so $\sum_{n=1}^{\infty}\frac{1}{n^p}$ diverges (by Test for Divergence)

Case 2 (p < 0): $\lim_{n \to \infty} \frac{1}{n^p} = \lim_{n \to \infty} n^{-p} = \infty$ since -p > 0. So, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ diverges (by Test for Divergence)

Case 3 (0 < $p \le 1$): Note that $\frac{1}{r^p}$ is continuous, positive, and decreasing.

Since $\int_1^\infty \frac{1}{x^p} dx$ diverges for $0 , we know <math>\sum_{n=1}^\infty \frac{1}{n^p}$ diverges (by Integral Test)

Case 4 (p > 1): Note that $\frac{1}{r^p}$ is continuous, positive, and decreasing.

Since $\int_1^\infty \frac{1}{x^p} dx$ converges for p > 1, we know $\sum_{n=1}^\infty \frac{1}{n^p}$ converges (by Integral Test)

Thus, $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1, and diverges if $p \le 1$.

_		:	
v	ra	CTI	\boldsymbol{c}
г	ıa	cti	CC

1. Does $\sum_{n=1}^{\infty} \frac{n}{n^2+1}$ converge or diverge? (Use the Integral Test. Be sure to show why the terms are decreasing.)

Challenge: Is there a "smallest" divergent series? (That is, a divergent series $\sum a_n$ where the terms a_n are smaller than the terms of any other divergent series.)

Q: A man leaves home and, after making three left turns, he ends up back at home, and finds two masked men waiting for him. What is happening?