_____ / 22 total points

Test #2

Name: _____ Monday, October 15, 2018

Math 18, Prof. Beydler

Directions: Show all work. No books or notes. A scientific calculator is allowed. Your desk and lap must be clear (no phones, no smart watches, etc.). If you have a phone in your lap or on your chair, it is considered cheating, and you will receive a zero on this test. Write your answers in the indicated places, or box your answers. Good luck!

1. (2 points) Factor the following. $8(2x+3)^4(x-2) + 32(2x+3)^3(x-2)^2$

Answer:

2. Given $f(x) = \sin x$, $g(x) = x^2 - 3$, and $h(x) = \sqrt{1 + 2x}$, evaluate

a) (2 points) $(h \circ f)(\pi)$

Answer:

b) (2 points) h(f(g(x)))

Answer:

3. (2 points) Find $g \circ f$ for the following function. Find the domain for the composition. $f(x) = x^2 - 4$, $g(x) = \frac{1}{x}$

g • *f* =_____

Domain of $g \circ f$:

Page 2 of 3

4. (2 points) Decompose the following functions. Make sure none of your functions are just *x*.

a)
$$f(g(x)) = e^{\sqrt{x}}$$

b) $f(g(h(x))) = \sin \frac{1}{(\ln x)^2}$
 $f(x) = \underline{\qquad}$
 $g(x) = \underline{\qquad}$
 $h(x) = \underline{\qquad}$

5. (2 points) Each of the following functions is a combination of two or more functions of the variable *x*. They are either a sum, difference, product, quotient, composition or combination of these. Describe each in words. Don't just write "product" but follow the example shown and specify the functions.

Example: $x^2 \cos(2x + 1)$ is a product of x^2 and $\cos(2x + 1)$ and a composition of 2x + 1 inside $\cos x$

 $\frac{x^2}{\sqrt{\cos x}}$

6. (3 points) Solve the following equations. $\cos^2 x - \sin x \cos x = 0$

Answer:

7. (3 points) Solve the following inequality. $x(2x+3)^2(x-1)^3 < 0$

Answer: _____

8. (3 points) Expand the following expression using the properties of logarithms.

$$\log \sqrt{\frac{10\sin^3 x}{3x^2 - x - 2}}$$

Answer: _____

9. (1 point) Determine whether the following statement is true or false.

$$\ln \sqrt[4]{x+y} = \frac{1}{4}\ln x + \frac{1}{4}\ln y$$

True False (circle one)