Derivative Shortcuts

(covers parts of Stewart 3.1, 3.3, 3.5, 3.6, and 3.11)

Don't worry about memorizing the following. I'll give them to you on quizzes and tests.

$\frac{d}{dx}(\csc^{-1}x) = \frac{-1}{ x \sqrt{x^2 - 1}} \mathfrak{D}$	$\frac{d}{dx}(\sec^{-1}x) = \frac{1}{ x \sqrt{x^2-1}} \mathfrak{P}$	$\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2} \mathfrak{T}$
$\frac{d}{dx}(\operatorname{csch} x) = -\operatorname{csch} x \operatorname{coth} x \stackrel{\text{Tr}}{2}$	$\frac{d}{dx}(\operatorname{sech} x) = -\operatorname{sech} x \tanh x \stackrel{\text{def}}{2}$	$\frac{d}{dx}(\coth x) = -\operatorname{csch}^2 x \stackrel{\text{\tiny def}}{=} $
$\frac{d}{dx}(\sinh^{-1}x) = \frac{1}{\sqrt{1+x^2}} \mathfrak{L}$	$\frac{d}{dx}(\cosh^{-1}x) = \frac{1}{\sqrt{x^2 - 1}} \stackrel{\text{tr}}{2}$	$\frac{d}{dx}(\tanh^{-1}x) = \frac{1}{1-x^2} \stackrel{\text{tr}}{\Sigma}$
$\frac{d}{dx}(\operatorname{csch}^{-1} x) = -\frac{1}{ x \sqrt{x^2+1}}\mathfrak{D}$	$\frac{d}{dx}(\operatorname{sech}^{-1} x) = -\frac{1}{x\sqrt{1-x^2}} \stackrel{\text{tr}}{=} $	$\frac{d}{dx}(\coth^{-1}x) = \frac{1}{1-x^2} \stackrel{\text{tr}}{\simeq} $

Ex 1.

Find the following derivatives.

$$\frac{d}{dx}(-15) =$$

$$\frac{d}{dx}(11x) =$$

$$\frac{d}{dx}(x^3) =$$

$$\frac{d}{dx}\left(\frac{1}{x}\right) =$$

$$\frac{d}{dx}(x^{\pi+e}) =$$

$$\frac{d}{dx}(\sqrt{x}) =$$

Ex 2.

Find the derivative of $y = x^3 + \frac{4}{3}x^2 - 5x + 1$.

Ex 3. Find the derivative of $y = 4\sqrt{x} - \frac{2}{3x}$.

Ex 4.

Find the derivative of $y = 2 \cos x - \sec x + 3 \cot x$.

Ex 5.

Find the derivative of $f(x) = -3\sin^{-1}x + \frac{2}{3}\tan^{-1}x$.

Ex 6.

Find the derivative of $y = 4 \ln x + \frac{e^x}{2} - 5^x + \frac{1}{2} \log_2 x$.

Ex 7. Find the derivative of $f(x) = -\cosh x - 7 \tanh x$.

Product Rule:
$$\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + \frac{d}{dx}[f(x)]g(x)$$

In other words, (fg)' = fg' + f'g

Ex 8. Differentiate $y = \frac{1}{x}(x^2 + e^x)$.

Ex 9.

Find the derivative of $y = (x^2 + 1)(x^3 + 3)$.

Quotient Rule:
$$\frac{d}{dx}\left[\frac{f(x)}{g(x)}\right] = \frac{g(x)\frac{d}{dx}[f(x)] - f(x)\frac{d}{dx}[g(x)]}{[g(x)]^2}$$

In other words, $\left(\frac{f}{g}\right)' = \frac{gf' - fg'}{g^2}$

Ex 10.

Differentiate $y = \frac{x^2 - 1}{x^3 + 1}$.

The Second Derivative

$$f''(x) = \frac{d}{dx}[f'(x)]$$
 also written $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right)$ or $y'' = (y')'$

Ex 11.

Find the second derivative of $y = 2x^4 - 5x^2 + 23x - 10$

Note: If s(t) is a position function, then s'(t) is the velocity function, and s''(t) is the acceleration function. Acceleration measures the rate of change of velocity.

The nth Derivative

To get the third derivative, fourth derivative, fifth derivative, etc., just keep differentiating. For example, here are the derivatives of $f(x) = 4x^3 - 2x^2 + 5x - 1$:

First derivative:	$f'(x) = 12x^2 - 4x + 5$
Second derivative:	$f^{\prime\prime}(x) = 24x - 4$
Third derivative:	$f^{\prime\prime\prime}(x) = 24$
Fourth derivative:	$f^{(4)}(x) = 0$
Fifth derivative:	$f^{(5)}(x) = 0$