Due date: _____

Name:

- 1. Write the definition of the derivative of a function f(x).
- 2. Find the derivative of $f(x) = 3x^2 x$ using the limit definition. Then find an equation for the tangent line at x = 2.

3. Find the derivative of $f(x) = x^2 + 2x$ using the limit definition. Then find the rate of change of f at x = 5.

4. Find the derivative of $f(x) = \sqrt{2x + 3}$ using the limit definition. Then find the slope of the tangent line at x = 3.

5. Find the derivative of $f(x) = \sqrt{4 - x}$ using the limit definition. Then find the rate of change of f at x = 1.

6. Find the derivative of $f(x) = \frac{2}{x+1}$ using the limit definition. Then find an equation for the tangent line at x = -2.

7. Find the derivative of $f(x) = \frac{1-x}{x+2}$ using the limit definition. Then find an equation for the tangent line at x = 0.

8. Suppose you move back and forth along a line, and that your position (in feet) over time (in second) is given by the function s(t) below.

9. Is f(x) = |x - 2| continuous at x = 2? Is it differentiable at x = 2? (Hint: Draw the graph of f!)

10. Write a formula for a function that is continuous at x = -1, but not differentiable at x = -1.

11. f(x) is differentiable at x = 2. Does that mean that f must also be continuous at x = 2?

12. Suppose you move back and forth along a line, and that your position (in miles) over time (in hour) is given by the function s(t) below.

14. The graph of $f(x)$ is given below.
3- ¹ V
2
f(x)
-3 -2 -1 0 1 2 3 4
•
-2
a. Find the x-value(s) where $f'(x) = 0$. Answer:
b. Find the <i>x</i> -value(s) where <i>f</i> is not differentiable. Answer:
c. Find <i>f</i> ′(3). Answer:
d. Find an equation of the tangent line at $x = 1$. Answer:
e. Find an equation of the tangent line at $x = 3$. Answer:
f. Find $\lim_{x \to -2} f(x)$. Answer:
g. Find $\lim_{x \to 0^-} f(x)$. Answer:
h. Find $\lim_{x \to 2} f(x)$. Answer:
i. Find $\lim_{x \to \infty} f(x)$. Answer:

Q: A man goes into a bar and asks for a glass of water. The barman pulls out a gun, and points it at the customer. "Thank you" replies the customer and walks out. What happened?

<u>Optional exercises</u> from the Stewart textbook if you'd like more practice: 2.7 (p.148) #5, 7, 9ab, 11, 13, 27, 31-35 odd 2.8 (p.160) #3-11 odd, 21-29 odd