Substitution

(covers Stewart 5.5)

The idea for the **substitution method** is to make a substitution so that the integral is simpler.

Ex 1.

Evaluate:

$$\int (x^3 + x)^5 (3x^2 + 1) \, dx$$

The Substitution Rule

If u = g(x) is a differentiable function whose range is an interval I, and f is continuous on I, then $\int f(g(x))g'(x)\,dx = \int f(u)\,du$

(**Proof:** Suppose F' = f and u = g(x). Then, $\int f(g(x))g'(x) \, dx = \int \frac{d}{dx} F(g(x)) \, dx = F(g(x)) + C = F(u) + C = \int F'(u) \, du = \int f(u) \, du.$

Notes:

To use the substitution method, what you're looking for is a function and its derivative.

The function for u will usually be inside another function.

You want the substitution to make the new integral easier to integrate.

Ex 2.

Evaluate:

$$\int \sec^2(5x+1) \cdot 5 \, dx$$

Ex 3.

Evaluate:

$$\int \sqrt{2x+1}\,dx$$

Ex 4.

Evaluate:

$$\int x^2 e^{x^3} \, dx$$

Sometimes you need to do some algebra before you can do a substitution.

Ex 5.

Evaluate:

$$\int \frac{dx}{e^x + e^{-x}}$$

Ex 6.

Evaluate:

 $\int \sec x \, dx$

Ex 7.

Evaluate:

$$\int x\sqrt{2x+1}\,dx$$