Due date:

Name:

Getting Ready for Derivatives (Part 5)

Notes
Recall the following trig identities: $\sin^2 x + \cos^2 x = 1$ $\sin(x + y) = \sin x \cos y + \cos x \sin y$ $\cos(x + y) = \cos x \cos y - \sin x \sin y$
Also, recall that for logarithms and exponentials: $e^{\ln x} = \underline{\times}$ and $\ln e^x = \underline{\times}$
There's also the change of base formula for logarithms: $\log_b a = \frac{\log_c a}{\log_c b}$
For example, this allows us to convert from any base to natural logarithms: $\log_b a = \frac{\ln a}{\ln b}$
Lastly, it's time to memorize the definitions of sinh x and cosh x: $e^{x} - e^{-x}$
$\sinh x = \underbrace{\frac{2}{e^{x} + e^{-x}}}_{e^{x} + e^{-x}}$
$\cosh x = $

1. Rewrite $\sin(\cos^{-1} x)$ as an algebraic expression.

Page 1 of 2

2. Rewrite $tan(sin^{-1}x)$ as an algebraic expression.

Practice at home

- 3. Try to fill in the following from memory.
 - a) $\sin^2 x + \cos^2 x =$
 - b) $\sin(x+y) = \frac{\sin x \cos y + \cos x \sin y}{\cos x \sin y}$
 - c) $\cos(x+y) = \frac{\cos x \cos y \sin x \sin y}{\cos x \sin y}$
 - d) $e^{\ln x} = \underline{\times}$
 - e) $\ln e^x = \underline{\times}$ f) $\log_b a = \underline{\log_b a}$ (Change of base formula) g) $\sinh x = \underline{\frac{e^x - e^{-x}}{2}}$ (Definition of $\sinh x$)
 - h) $\cosh x = \frac{e^{x} + e^{-x}}{2}$ (Definition of $\cosh x$)
- 4. Rewrite $sin(tan^{-1}x)$ as an algebraic expression.

5. Rewrite $\cos(\sin^{-1} x)$ as an algebraic expression.

