Proving Derivatives

(covers parts of Stewart 3.1, 3.3, 3.5, 3.6)

The Power Rule

Here's the proof of the derivative of $f(x) = x^n$:

Suppose
$$f(x) = x^n$$
. Then,
$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{(x+h)^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{x^n + \binom{n}{1}x^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \dots + h^n - x^n}{h}$$

$$= \lim_{h \to 0} \frac{nx^{n-1}h + \binom{n}{2}x^{n-2}h^2 + \dots + h^n}{h}$$

$$= \lim_{h \to 0} \left(nx^{n-1} + \binom{n}{2}x^{n-2}h + \dots + h^{n-1}\right)$$

$$\frac{d}{dx}(x^n) = nx^{n-1}$$

Trigonometric Functions

To figure out the derivatives of $\sin x$ and $\cos x$ by the definition, we need these two limits:

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \qquad \text{and} \qquad \lim_{\theta \to 0} \frac{\cos \theta - 1}{\theta} = 0$$

These two limits can be proven using a geometric argument. Then we can find the derivatives of $\sin x$ and $\cos x$ as follows:

$$\frac{d}{dx}(\sin x) = \lim_{h \to 0} \frac{\sin(x+h) - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x \cos h + \cos x \sin h - \sin x}{h}$$

$$= \lim_{h \to 0} \frac{\sin x (\cos h - 1) + \cos x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\sin x \cdot \frac{\cos h - 1}{h} + \cos x \cdot \frac{\sin h}{h}\right)$$

$$= \sin x \cdot 0 + \cos x \cdot 1$$

$$= \cos x$$

$$\frac{d}{dx}(\cos x) = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{\cos x (\cos h - 1) - \sin x \sin h}{h}$$

$$= \lim_{h \to 0} \left(\cos x \cdot \frac{\cos h - 1}{h} - \sin x \cdot \frac{\sin h}{h}\right)$$

$$= \cos x \cdot 0 - \sin x \cdot 1$$

$$= -\sin x$$

But what about tan x and the rest of the gang?

Ex 1.

Prove that the derivative of $y = \tan x$ is $\frac{dy}{dx} = \sec^2 x$ by using the derivatives of $\sin x$ and $\cos x$.

$$\frac{d}{dx}(tanx) = \frac{d}{dx}\left(\frac{\sin x}{\cos x}\right) = \frac{\cos x \cdot (\cos x - \sin x)(-\sin x)}{(\cos x)^2} = \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x}$$

$$= \sec^2 x$$

Exponential Functions

To find the derivative of e^x by the definition, we need the following limit:

$$\lim_{h \to 0} \frac{e^{h} - 1}{h} = 1$$

This limit is sometimes taken to just be definitional. That is, e is the number where $\lim_{h\to 0}\frac{e^{h}-1}{h}=1$.

Then,

$$\frac{d}{dx}(e^x) = \lim_{h \to 0} \frac{e^{x+h} - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x e^h - e^x}{h}$$

$$= \lim_{h \to 0} \frac{e^x (e^h - 1)}{h}$$

$$= \lim_{h \to 0} e^x \cdot \frac{e^h - 1}{h}$$

$$= e^x \cdot 1$$

$$= e^x$$

Here's how to get the derivative of $y = a^x$:

$$\frac{d}{dx}(a^x) = \frac{d}{dx}((e^{\ln a})^x) = \frac{d}{dx}(e^{x \ln a}) = e^{x \ln a} \ln a = a^x \ln a$$

Logarithmic Functions

To find the derivative of logarithms, we can use implicit differentiation.

Ex 2.

Prove that the derivative of $y = \ln x$ is $\frac{dy}{dx} = \frac{1}{x}$.

$$e^{y} = e^{hx}$$

$$e^{y} = x$$

$$\frac{d}{dx}(e^{y}) = \frac{d}{dx}(x)$$

$$e^{y} \cdot \frac{dy}{dx} = 1$$

$$\frac{dy}{dx} = \frac{1}{e^{hx}} = \frac{1}{x}$$

Note: We can extend our results to include negative x-values: $\frac{d}{dx}(\ln|x|) = \frac{1}{x}$ $(x \neq 0)$

Here's how to get the derivative of $y = \log_a x$.

$$\frac{d}{dx}(\log_a x) = \frac{d}{dx}\left(\frac{\ln x}{\ln a}\right) = \frac{1}{\ln a} \cdot \frac{d}{dx}(\ln x) = \frac{1}{\ln a} \cdot \frac{1}{x} = \frac{1}{x \ln a}$$

Inverse Trigonometric Functions

We can use implicit differentiation with inverse trig functions, too.

Ex 3.

Prove that the derivative of $y = \sin^{-1} x$ is $\frac{dy}{dx} = \frac{1}{\sqrt{1-x^2}}$.

Hyperbolic Functions

Recall that $\sinh x = \frac{e^x - e^{-x}}{2}$ and $\cosh x = \frac{e^x + e^{-x}}{2}$.

Ex 4.

Prove that the derivative of $y = \sinh x$ is $\frac{dy}{dx} = \cosh x$.

$$\frac{d}{dx}(\sinh x) = \frac{d}{dx}\left(\frac{e^{x}-e^{-x}}{2}\right)$$

$$= \frac{e^{x}+e^{-x}}{2}$$

$$= \cosh x$$

$$\frac{d}{dx}(e^{-x}) = e^{-x}.(-1) = -e^{-x}$$

Here are the derivatives you might be asked to prove:

$$\frac{d}{dx}(\tan x) = \sec^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\cot x) = -\csc^2 x$$

$$\frac{d}{dx}(\sin^{-1} x) = \frac{1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\cos^{-1} x) = \frac{-1}{\sqrt{1-x^2}}$$

$$\frac{d}{dx}(\tan^{-1} x) = \frac{1}{1+x^2}$$

$$\frac{d}{dx}(\sin x) = \frac{1}{x} \quad (x > 0)$$

$$\frac{d}{dx}(\sinh x) = \cosh x$$

$$\frac{d}{dx}(\cosh x) = \sinh x$$

$$\frac{d}{dx}(\tanh x) = \operatorname{sech}^2 x$$