Test #2 (Part 2, Calculator Okay)

Name: _____

Math 160, Prof. Beydler

Thursday, October 25, 2018

Directions: Show all work. No books or notes. A **scientific calculator** is allowed. Your desk and lap must be clear (no phones, no smart watches, etc.). If you have a phone in your lap or on your chair, it is considered cheating, and you will receive a zero on this test. Write your answers in the indicated places, or box your answers. Good luck!

1. Let $f(x) = \frac{x}{x-1}$ and $g(x) = \sqrt{x}$. a) (1 point) Find $(f \circ f)(2)$.

Answer:

b) (3 points) Find $f \circ g$ and its domain.

 $(f \circ g)(x) =$

Domain of $f \circ g$:_____

2. (5 points) Graph $f(x) = \frac{1}{2}e^{2x} - 1$. State the domain, range, and asymptote. Be sure to describe the transformations to the basic function.

		+ + + +	4. 3	y		 	 	Domain:	
 _		+ 	2		 _	 	 	Range:	
_			1.		 	 		Asymptote:	
-4	-3 -	-2	<u>0</u> -1 -1	0	1	2	3	<u>x</u> 4	
-	- F F	+	-2		 	 	 		
1	1				1				
-	- - +	+	-3			 	 		

3. (5 points) Graph $f(x) = -\log_2(\frac{x}{2} + 1)$. State the domain, range, and asymptote. Be sure to describe the transformations to the basic function.

4. (3 points) Solve: $5^{2x} - 2 \cdot 5^x - 3 = 0$

Answer: _____

5. (3 points) Solve: $\log_2(2x + 3) = 3 + \log_2(x - 1)$

Answer: _____

6. (5 points) A cast iron skillet is $500^{\circ}F$ when you take it out of the oven. Ten minutes later, the skillet is $400^{\circ}F$. Suppose the room temperature is $70^{\circ}F$. First, use Newton's Law of Cooling $(T(t) = T_s + (T_0 - T_s)e^{-kt})$ to find a function that models the temperature of the skillet t minutes after your initial temperature reading. Then, use the function to predict when the skillet will be $200^{\circ}F$ (round your answer to the nearest minute). While solving, round k to 5 significant figures.

Model T(t) =_____

When skillet will be 200°*F*:_____

7. (4 points) Find the amplitude, period, and phase shift of $y = 2 + 2\cos\left(\pi x + \frac{\pi}{2}\right)$ and graph one complete period. Be sure to find the 5 key points.

Amplitude: _____

Phase shift: _____

Period: _____

8. (4 points) Find the period and phase shift of $y = \cot(\frac{1}{2}x + \pi) + 2$ and graph one complete period. Be sure to find the 5 key points/asymptotes.

