1. Find each value.

$$\sin^{-1}\left(-\frac{\sqrt{2}}{2}\right) = \cos^{-1}1 = \tan^{-1}(-1) =$$

$$\tan^{-1}\frac{\sqrt{3}}{3} = \qquad \qquad \sin^{-1}\left(\sin\frac{5\pi}{4}\right) = \qquad \qquad \cos^{-1}(\cos\pi) =$$

$$\cos^{-1}\left(\cos\frac{7\pi}{2}\right) =$$

2. Find the exact value of the expression. $\csc\left(\cos^{-1}\frac{7}{25}\right)$

3. Rewrite the expression as an algebraic expression in x. $tan(cos^{-1} x)$

Q: A man rode his horse into town on Tuesday. Two days later he rode home on Tuesday. How is this possible?

4. Find the exact value in radians without a calculator.

a)
$$\sin^{-1}\left(-\frac{\sqrt{3}}{2}\right)$$

b) $\sin^{-1} 0$

c)
$$\sin^{-1}\frac{\pi}{2}$$

d) $\cos^{-1}(-1)$

e) $\cos^{-1}\left(-\frac{\sqrt{2}}{2}\right)$

f)
$$\tan^{-1}(-1)$$

g) $\tan^{-1}\sqrt{3}$

h) $\sec^{-1}\sqrt{2}$ (make sure your output is between 0 and π)

i)
$$\sec^{-1}\left(-rac{2\sqrt{3}}{3}
ight)$$
 (make sure your output is between 0 and π)

j)
$$\csc^{-1}\left(-\frac{2}{\sqrt{3}}\right)$$
 (make sure your output is between $-\frac{\pi}{2}$ and $\frac{\pi}{2}$)

5. Find the exact value without a calculator.

a)
$$\sin^{-1}\left(\sin\frac{\pi}{3}\right)$$

b)
$$\tan^{-1}\left(\tan\left(-\frac{\pi}{6}\right)\right)$$

c)
$$\tan^{-1}\left(\tan\frac{7\pi}{6}\right)$$

d)
$$\cos^{-1}\left(\cos\frac{4\pi}{3}\right)$$

e) $tan(cos^{-1}0)$

f) $\cos(\sin^{-1} 1)$

g) $\cot\left(\sin^{-1}\left(-\frac{2}{5}\right)\right)$

h)
$$\sec\left(\tan^{-1}\frac{7}{4}\right)$$

i)
$$\csc\left(\cos^{-1}\frac{1}{5}\right)$$

j) $\cos(\tan^{-1} 1)$

- 6. Rewrite each expression as an algebraic expression in x.
 - a) $\sin(\tan^{-1}x)$

b) $\tan(\sin^{-1} x)$

c) $\cos(\sin^{-1} x)$

<u>Optional exercises</u> from the Sullivan book if you'd like more practice: 7.1 (p.450) #15-57 odd

7.2 (p.457) #9-43 odd, 57, 59, 65