Math 150 - Test #1 Study Guide

Spring 2017, Prof. Beydler

Test #1

- Date: Thursday, March 23, 2017
- Will cover sections 1.1, 1.3, 1.4, 2.1-2.5, and 3.1.
- You'll have the entire class to finish the test.
- There will be 2 parts to the test:
 - Part 1: No calculators allowed.
 - Part 2: Scientific calculator allowed (you'll need it!).
- No notes, no books, no phones, no smart watches during the test.
- There will be a seating chart for the test.
- Where to get help as you're studying:
 - Office hours
 - TMARC, LAC, or other tutoring centers
 - o E-mail me at <u>dbeydler@mtsac.edu</u>

Some of the stuff on the test:

- Complementary angles add up to 90°. Supplementary angles add up to 180°.
- $1^\circ = 60', 1' = 60''$

	De strange et la la			
Trig function definition	s Reciprocal Ide	ntities		Pythagorean Identities
$(r=\sqrt{x^2+y^2}):$. 1	. 1		$\sin^2\theta + \cos^2\theta = 1$
$\sin \theta = \frac{y}{r}$ $\csc \theta =$	$=\frac{r}{y}$ $\sin\theta = \frac{1}{\csc\theta}$	$\csc\theta = \frac{1}{\sin\theta}$		$\tan^2\theta + 1 = \sec^2\theta$
	r $\cos \theta = \frac{1}{2}$	$\cos \theta = \frac{1}{2}$ $\sec \theta = \frac{1}{2}$		$1 + \cot^2 \theta = \csc^2 \theta$
$\cos\theta = -\frac{1}{r}$ $\sec\theta =$	$=\frac{1}{x}$ sec θ	$\cos \theta$		Quotient Identities
$\tan \theta = \frac{y}{x} \qquad \cot \theta =$	$=\frac{x}{y}$ $\tan\theta = \frac{1}{\cot\theta}$	$\cot\theta = \frac{1}{\tan\theta}$		$ \tan \theta = \frac{\sin \theta}{\cos \theta} \qquad \cot \theta = \frac{\cos \theta}{\sin \theta} $
]			
Trig Function of $ heta$	Range			
$\sin \theta$, $\cos \theta$	[-1,1]			
$\tan \theta$, $\cot \theta$	(−∞,∞)			
$\sec\theta$, $\csc\theta$	$(-\infty, -1] \cup [1, \infty)$			
Trig functions in right triangles				
$\sin \theta = \frac{\text{opp}}{\text{hyp}}$	$\cos \theta = \frac{\mathrm{adj}}{\mathrm{hyp}}$	$\tan \theta = \frac{\mathrm{opp}}{\mathrm{adj}}$: opp adj opposite	
$\csc \theta = \frac{\text{hyp}}{\text{opp}}$	$\sec \theta = \frac{\text{hyp}}{\text{adj}}$	$\cot \theta = \frac{\mathrm{adj}}{\mathrm{opp}}$		θ adjacent
Cofunction Identities				
$\sin A = \cos(90^\circ - A)$	$\sec A = \csc(90^\circ - A)$	$\tan A = \cot(90^\circ - A)$		
$\cos A = \sin(90^\circ - A)$	$\csc A = \sec(90^\circ - A)$	$\cot A = \tan(90^\circ - A)$		

- Radian measure of θ : $\theta = \frac{s}{r}$
- $180^\circ = \pi$ radians

Extra Credit!

- If you write up the answers to all of the review exercises listed below, and hand them in at the test, you can earn up to 3% extra credit towards your test (depending on neatness and completeness)!
 These review exercises don't cover everything. Also, some of the exercises might be tough, but hey, you've got to work for your extra credit! ^(C)
- Review exercises:
 - o Chapter 1: p.42 #2-4 all, 7-11 odd, 25-31 odd, 37-45 odd
 - Chapter 2: p.93 #1-5 odd, 13, 15, 21-27 odd, 45-48 all, 51, 52
 - Chapter 3: p.135 #5-15 odd, 35-40 all

(If you're using the older, 10th edition, here are the equivalent problem numbers: p.40 #2-5 all, 9-13 odd, 25-31 odd, 37-45 odd p.88 #1-5 odd, 13, 15, 21-27 odd, 49-52 all, 55, 56 p.128 #5-15 odd, 33-38 all)