3.2 – Notes

Concavity and Points of Inflection

The 2nd derivative tells us how the 1st derivative is changing.

If f'' is positive, then f' is _____, and the graph of f is _____.

If f'' is negative, then f' is _____, and the graph of f is _____

Where might f(x) change from concave up to concave down, or concave down to concave up?

- 1. When f''(x) = 0
- 2. When f''(x) does not exist (DNE)

Ex 1.

Determine the intervals of concavity for $f(x) = x^4 + x^3 - 3x^2 + 1$.

A point (c, f(c)) where the concavity changes is called an _____ (Again, this might happen if either f''(c) = 0 or f''(c) does not exist.)

Ex 3.

Find all inflection points of $g(x) = x^{\frac{1}{3}}$.

2nd Derivative Test

Suppose f'(c) = 0. If f''(c) > 0, then there is a relative ______at x = c. If f''(c) < 0, then there is a relative ______at x = c. If f''(c) = 0 or f''(c) does not exist, then test doesn't say anything (maybe try 1st Derivative Test).

Ex 4.

Use the 2nd Derivative Test to find the relative maxima and minima of $f(x) = 2x^3 + 3x^2 - 12x - 7$.

Note:

 $f(x) = x^4$ $f'(x) = 4x^3$ $f''(x) = 12x^2$

Note that here, f'(x) = 0 when x = 0, but f''(0) = 0, so the 2nd Derivative Test is inconclusive.

Summary:

 1^{st} Derivative Test – Uses sign of f' across a critical number to find relative max/min.

 2^{nd} Derivative Test – Uses sign of f'' at a critical number to find relative max/min.

Practice

1. Determine the intervals of concavity for $f(x) = x^4 + 6x^3 - 24x^2 + 2$, and find all inflection points.

2. Use the 2nd Derivative Test to find the relative maxima and minima of $f(x) = 2x + 1 + \frac{2}{x}$.