7.5 – Notes

Constrained Optimization: The Method of Lagrange Multipliers

Q: How can we find the max/min of a two-variable function with a constraint on the variables? For example, find the max/min values of f(x, y) = x + y subject to the constraint $x^2 + y^2 = 8$. The **method of Lagrange multipliers** gives us a way to solve such problems. Here are the steps given a function f(x, y) that you want to maximize/minimize, and a constraint g(x, y) = k:

- 1. Find f_x , f_y , g_x , and g_y .
- 2. Solve the following system of equations (λ is a new variable called the Lagrange multiplier): $\begin{cases}
 f_x = \lambda g_x \\
 f_y = \lambda g_y
 \end{cases}$

$$\int g = k$$

- 3. For each solution (a, b) in step 2, find f(a, b).
- 4. Largest value from step 3 is max value, and smallest value from step 3 is min value.

Ex 1.

Find the max/min values of f(x, y) = x + y subject to the constraint $x^2 + y^2 = 8$.

Ex 2.

Find the max/min values of $f(x, y) = 8x^2 - 24xy + y^2$ subject to the constraint $8x^2 + y^2 = 1$.

Practice

1. Find the minimum value of $f(x, y) = x^2 + 2y^2 - xy$ subject to the constraint 2x + y = 22.

Q: A bus driver was heading down a street in Walnut. He went right past a stop sign without stopping, went the wrong way on a one-way street, and then went on the left side of the road past a cop car. The cop did nothing, because he didn't break any traffic laws. Why not?