2.3 – Notes

Product and Quotient Rules; Higher-Order Derivatives

Here are two more shortcuts to computing the derivative.

Product Rule: $\frac{d}{dx}[f(x)g(x)] = f(x)\frac{d}{dx}[g(x)] + g(x)\frac{d}{dx}[f(x)]$

In other words, (fg)' = fg' + gf'

Ex 1. Differentiate $f(x) = (x - 3)(2x^2 + 4x - 1)$.

Quotient Rule:
$$\frac{d}{dx} \left[\frac{f(x)}{g(x)} \right] = \frac{g(x) \frac{d}{dx} [f(x)] - f(x) \frac{d}{dx} [g(x)]}{[g(x)]^2}$$

In other words, $\left(rac{f}{g}
ight)'=rac{gf'-fg'}{g^2}$

Ex 2.

Differentiate $f(x) = \frac{x^2 - 3x + 5}{2x - 1}$.

Notation: A shorter way to write $\frac{dy}{dx}$ is y'.

The Second Derivative

 $f''(x) = \frac{d}{dx}[f'(x)]$ also written $\frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right)$ or y'' = (y')'

Ex 3.

Find the second derivative of $y = 2x^4 - 5x^2 + 23x - 10$

The nth Derivative

To get the third derivative, fourth derivative, fifth derivative, etc, just keep differentiating. For example, here are the derivatives of $f(x) = 4x^3 - 2x^2 + 5x - 1$:

$(x) = 12x^2 - 4x + 5$
'(x) = 24x - 4
''(x) = 24
$^{(4)}(x)=0$
$^{(5)}(x)=0$

Practice

1. Differentiate f(x) = (x + 3)(2x - 5)

2. Differentiate
$$y = \frac{x^2+1}{1-x^2}$$

3. Find an equation for the tangent line to $y = \frac{x}{2x+1}$ at the point where x = -2. (Hint: Find y', then find y'(-2) to find the slope of the tangent line at x = -2, then use point-slope form.)

4. Find all points on the graph of $f(x) = (x - 1)(x^2 - 3x + 2)$ where the tangent line is horizontal. (Hint: Find f'(x), then find all x where f'(x) = 0.) 5. Find the second derivative of $y = x^2(3x + 2)$.

6. Find the fifth derivative of $y = \frac{1}{x}$ (Hint: Rewrite $\frac{1}{x}$ as x^{-1} , then use Power Rule to take derivatives.)